

NATIONAL ENERGY TECHNOLOGY LABORATORY

Collaborators

J. Dietiker, WVURC

P. Gopalakrishnan, VPISU

D. Huckaby, DOE

J. Carney, DOE

T. Li, URS

J. Musser, WVU

M. Shahnam, DOE

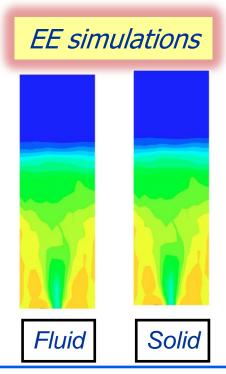
MPPIC model implementation in MFIX: frictional solid-stress model

Rahul Garg^{1,2}

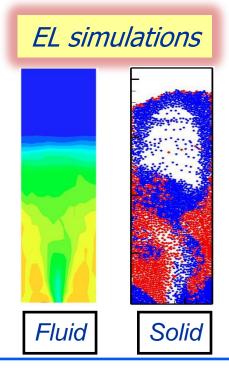
1: National Energy Technology Laboratory

2: URS Corp.

Current simulation types in MFIX



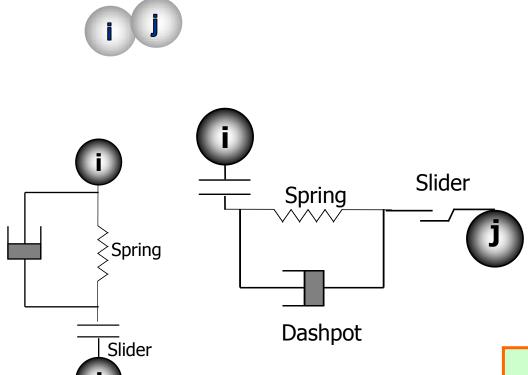
- ☐ Two-Fluid Method (Volume/Ensemble averaging)
- Quadrature methods (discretized distribution function)



- ☐ Discrete-element method (MFIX-DEM)
- ☐ Multiphase-Particle-In-Cell method (MPPIC), DPM, dense-phase-DPM, etc.

Discrete Element Method (DEM)

Collision between real particles



Advantages

- ➤ Collisions directly resolved
- ➤ Tool for model validation

Disadvantages

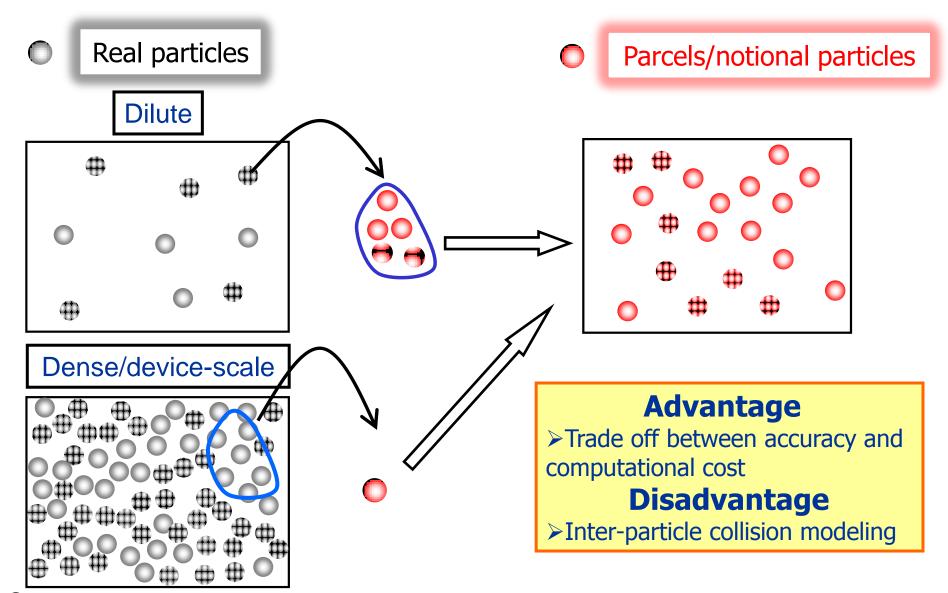
- ➤ Impractical for large-scale problems
- ➤ Not ideal for distributed memory parallelization

Remedy
Use parcels/notional particles

Normal Force

Tangential Force

MPPIC model



MPPIC: current state-of-the-art

- ✓ MPPIC model is a useful tool for quick turnaround simulations of engineering applications (2006 roadmap)
- ✓ Several commercial implementations (Barracuda by CPFD, Dense-phase-DPM by ANSYS)
- ✓ Hard to ascertain and further develop sub-models (such as collision, friction, etc.)
- ✓ Lack of an open-source implementation that can be used for model development/enhancement, and independent verification and validation (V&V)
- Objective of this study: Implement MPPIC like model in open-source MFIX code to probe its accuracy and speed

MPPIC model details

Carrier Phase: averaged Navier-Stokes equation

$$\frac{\partial(\varepsilon_{\mathsf{g}}\rho_{\mathsf{g}})}{\partial t} + \nabla \cdot (\varepsilon_{\mathsf{g}}\rho_{\mathsf{g}}\mathbf{v}_{\mathsf{g}}) = 0$$

$$\frac{D}{Dt}(\varepsilon_{g}\rho_{g}v_{g}) = \nabla \cdot \overline{\overline{S}}_{g} + \varepsilon_{g}\rho_{g}g - F_{drag}$$

Dispersed Phase

$$\frac{d\mathbf{x}_{\mathsf{p}}}{dt} = \mathbf{u}_{\mathsf{p}}$$

A_{coll} is the collision operator used to model collisions in the *kinetic* and *frictional* regimes.

Robust implementation of *frictional* regime A_{coll} is critical to stability of MPPIC model

$$m \frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$

Particle trajectory evolution

$$m \frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$

$$\begin{aligned} \mathbf{u'}_{p}^{n+1} &= \mathbf{u}_{p}^{n} + \left(\mathbf{g} + \frac{\mathbf{f}_{p,drag}}{m}\right) \Delta t \\ \mathbf{x'}_{p}^{n+1} &= \mathbf{x}_{p}^{n} + \Delta t \mathbf{u'}_{p}^{n+1} \\ \left(\mathbf{x'}_{p}^{n+1}, \mathbf{u'}_{p}^{n+1}\right) &\xrightarrow{\text{Wall B.C.}} \left(\mathbf{x}_{p}^{n+1}, \mathbf{u}_{p}^{*n+1}\right) \\ \mathbf{u}_{p}^{*n+1} &\xrightarrow{A_{coll}} \mathbf{u}_{p}^{n+1} \end{aligned}$$

How is A_{coll} applied?

A_{coll} implementation (frictional regime)

$$m \frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$

$$\mathbf{u'_p^{n+1}} = \mathbf{u_p^n} + \left(\mathbf{g} + \frac{\mathbf{f_{p,drag}}}{m}\right) \Delta t$$

$$\mathbf{x'}_{p}^{n+1} = \mathbf{x}_{p}^{n} + \Delta t \mathbf{u'}_{p}^{n+1}$$

$$\left(\mathbf{x'_p^{n+1}}, \mathbf{u'_p^{n+1}}\right) \xrightarrow{\text{Wall B.C.}} \left(\mathbf{x_p^{n+1}}, \mathbf{u^*_p^{n+1}}\right)$$

$$\mathbf{u}^{*n+1} \xrightarrow{A_{\mathsf{COII}}} \mathbf{u}_{\mathsf{p}}^{n+1}$$

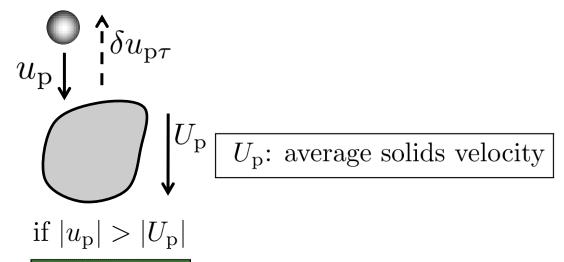
$$\chi = \varepsilon_{S}$$
 $\varepsilon_{S} \ge \varepsilon_{Scp}$

$$= 0 \quad \text{otherwise}$$

$$\delta \mathbf{u}_{\mathsf{p}\tau} = -\nabla \chi$$

 χ is like a coloring function used to indicate the close-packed regions. $\delta \mathbf{u}_{p\tau}$ is non-zero inside and at the interfaces of close-packed regions. It only indicates the direction of the correction due to close-packing.

Case 1



REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$
 else

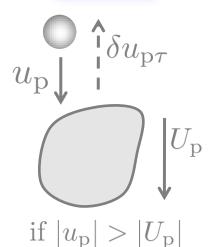
$$\mathbf{u}^*_{p}^{n+1} \xrightarrow{A_{\text{coll}}} \mathbf{u}_{p}^{n+1}$$

$$\chi = \varepsilon_{\text{S}} \quad \varepsilon_{\text{S}} \ge \varepsilon_{\text{Scp}}$$

$$= 0 \quad \text{otherwise}$$

$$\delta \mathbf{u}_{\text{p}\tau} = -\nabla \chi$$

Case 1

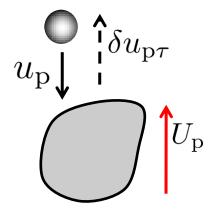


REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$
 else

DO NOTHING

Case 2

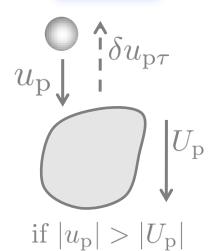


REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$

$$\mathbf{u}^{*n+1} \xrightarrow{A_{\text{coll}}} \mathbf{u}_{\text{p}}^{n+1}$$
 $\chi = \varepsilon_{\text{S}} \quad \varepsilon_{\text{S}} \ge \varepsilon_{\text{Scp}}$
 $= 0 \quad \text{otherwise}$
 $\delta \mathbf{u}_{\text{p}\tau} = -\nabla \chi$

Case 1

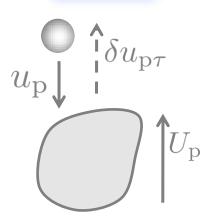


REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$
 else

DO NOTHING

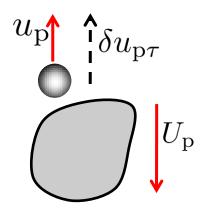
Case 2



REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$

Case 3

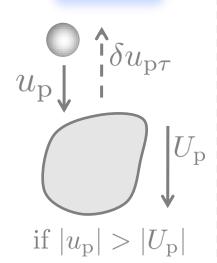


$$\mathbf{u}^{*n+1} \xrightarrow{A_{\text{coll}}} \mathbf{u}_{\text{p}}^{n+1}$$

$$\chi = \varepsilon_{\text{S}} \quad \varepsilon_{\text{S}} \ge \varepsilon_{\text{Scp}}$$

$$= 0 \quad \text{otherwise}$$

$$\delta \mathbf{u}_{\text{p}\tau} = -\nabla \chi$$

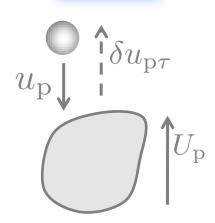


REBOUNE

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$
else

DO NOTHING

Case 2



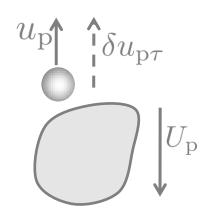
REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$

 $\mathbf{u}^{*n+1} \xrightarrow{A_{\text{coll}}} \mathbf{u}_{\text{p}}^{n+1}$ $\chi = \varepsilon_{\text{S}} \quad \varepsilon_{\text{S}} \ge \varepsilon_{\text{Scp}}$ $= 0 \quad \text{otherwise}$

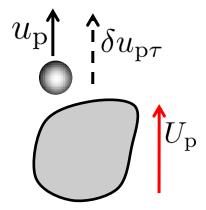
$$\delta \mathbf{u}_{\mathsf{p}\tau} = -\nabla \chi$$

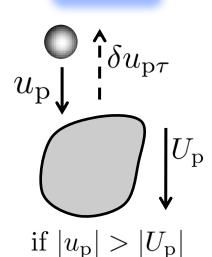
Case 3



DO NOTHING

Case 4



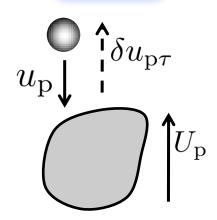


REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$
 else

DO NOTHING

Case 2



REBOUND

$$u_{\mathbf{p}}^{n+1} = -e \, u_{\mathbf{p}}$$

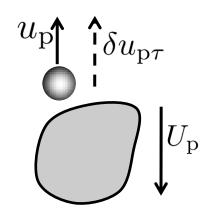
$$\mathbf{u}^{*n+1} \xrightarrow{A_{\text{coll}}} \mathbf{u}_{p}^{n+1}$$

$$\chi = \varepsilon_{S} \quad \varepsilon_{S} \ge \varepsilon_{\text{Scp}}$$

$$= 0 \quad \text{otherwise}$$

 $\delta \mathbf{u}_{\mathsf{p} au} = -\mathbf{\nabla}\chi$

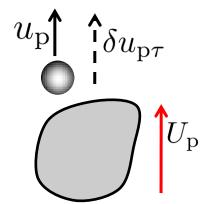
Case 3



DO NOTHING

___ i

Case 4



Comparison with existing literature

$$m \frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$

$$\mathbf{u}_{p}^{n+1} = \widetilde{\mathbf{u}}_{p} + \mathbf{u}_{p\tau}$$

$$\widetilde{\mathbf{u}}_{p} = \mathbf{u}_{p}^{n} + \left(\mathbf{g} + \frac{\mathbf{f}_{p,drag}}{m}\right) \Delta t$$

No inter-particle collision term so far

Snider, D. M., An incompressible 3-D MP-PIC model for dense particle flows, JCP (2001)

Comparison with existing literature

$$m\frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$
$$\mathbf{u}_{p}^{n+1} = \widetilde{\mathbf{u}}_{p} + \mathbf{u}_{p\tau}$$

$$\tau = \frac{P_{\rm S}\varepsilon_{\rm S}^{\beta}}{\max\left[\varepsilon_{\rm Scp} - \varepsilon_{\rm S}, \epsilon\left(1 - \varepsilon_{\rm S}\right)\right]} \quad \text{Isotropic inter-particle stress (Harris and Crighton)}$$

$$\delta \mathbf{u}_{\mathsf{p}\tau} = -\frac{\Delta t \nabla \tau}{\rho_{\mathsf{S}\varepsilon_{\mathsf{S}}}}$$

Decides the direction of solid-stress correction velocity

$$(\nabla \tau).\mathbf{e}_{k} \leq 0$$

$$u'_{p\tau_{k}} = \min\left(\mathbf{e}_{k} \cdot \delta \mathbf{u}_{\mathsf{p}\tau}, (1+\gamma)(\mathbf{U}_{p} - \widetilde{\mathbf{u}}_{\mathsf{p}}) \cdot \mathbf{e}_{k}\right)$$

$$u_{p\tau_{k}} = \max\left(u'_{p\tau_{k}}, 0\right)$$

Matters mostly near close-packing, otherwise statistical noise!

Comparison with existing literature

$$m\frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$
$$\mathbf{u}_{p}^{n+1} = \widetilde{\mathbf{u}}_{p} + \mathbf{u}_{p\tau}$$
$$\tau = \frac{P_{s}\varepsilon_{s}^{\beta}}{\max\left[\varepsilon_{scp} - \varepsilon_{s}, \epsilon\left(1 - \varepsilon_{s}\right)\right]}$$

$$\delta \mathbf{u}_{\mathsf{p}\tau} = -\frac{\Delta t \nabla \tau}{\rho_{\mathsf{S}} \varepsilon_{\mathsf{S}}}$$

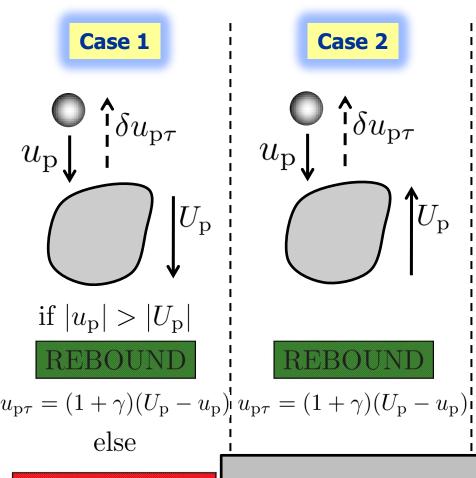
WHAT DO THESE LIMITERS IMPLY?

$$(\nabla \tau).\mathbf{e}_{k} \leq 0$$

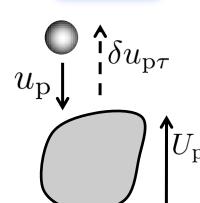
$$u'_{p\tau_{k}} = \min\left(\mathbf{e}_{k} \cdot \delta \mathbf{u}_{\mathsf{p}\tau}, (1+\gamma)(\mathbf{U}_{p} - \tilde{\mathbf{u}}_{\mathsf{p}}) \cdot \mathbf{e}_{k}\right)$$

$$u_{p\tau_{k}} = \max\left(u'_{p\tau_{k}}, 0\right)$$

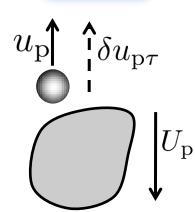
Explanation of limiters



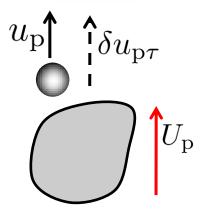
Case 2



Case 3



Case 4



if $u_{\rm p} < U_{\rm p}$

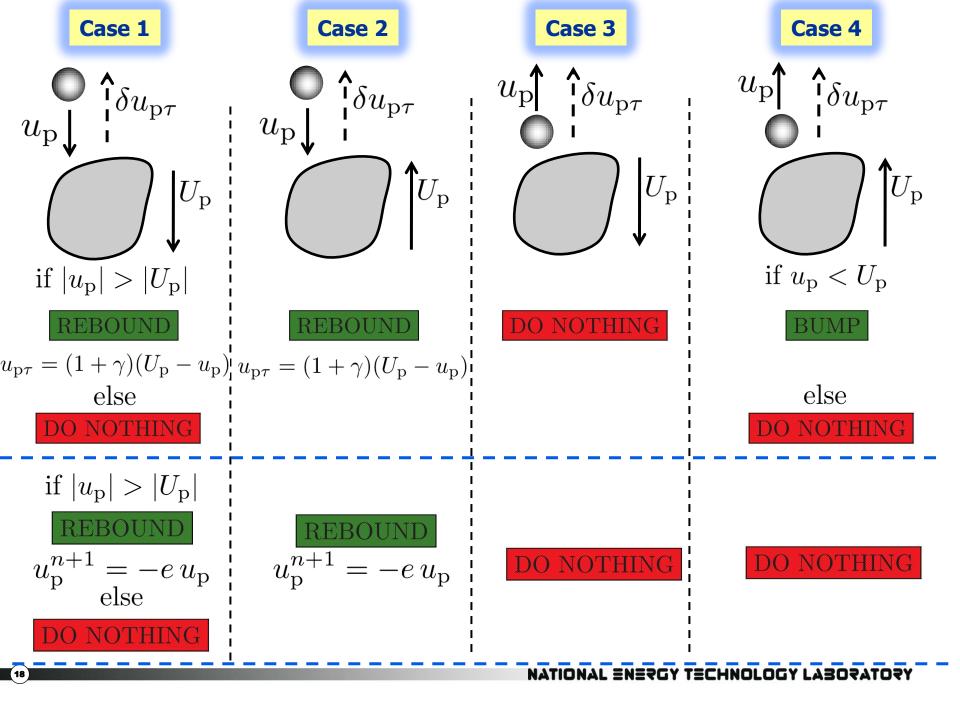
 $u_{\mathrm{p}\tau} = (1+\gamma)(U_{\mathrm{p}} - u_{\mathrm{p}})$ else

$$u_{\mathrm{p}\tau} = (1 + \gamma)(U_{\mathrm{p}} - u_{\mathrm{p}})$$

 $\mathbf{u}_{\mathsf{p}}^{n+1} = \widetilde{\mathbf{u}}_{\mathsf{p}} + \mathbf{u}_{\mathsf{p} au}$

$$\delta \mathbf{u}_{\mathsf{p}\tau} = -\frac{\Delta t \nabla \tau}{\rho_{\mathsf{S}} \varepsilon_{\mathsf{S}}}$$

$$\begin{vmatrix} (\nabla \tau) \cdot \mathbf{e}_k \leq 0 \\ u'_{\mathsf{p}\tau_k} = \min\left(\mathbf{e}_k \cdot \delta \mathbf{u}_{\mathsf{p}\tau}, (1+\gamma)(\mathbf{U}_{\mathsf{p}} - \mathbf{u}_{\mathsf{p}}) \cdot \mathbf{e}_k\right) \\ u_{\mathsf{p}\tau_k} = \max\left(u'_{\mathsf{p}\tau_k}, 0\right) \end{vmatrix}$$



Implementation comparison

$$m\frac{d\mathbf{u}_{p}}{dt} = m\mathbf{g} + \mathbf{f}_{p,drag} + m\mathbf{A}_{coll}$$

Existing Literature

$$\mathbf{u}_{\mathsf{p}}^{n+1} = \widetilde{\mathbf{u}}_{\mathsf{p}} + \mathbf{u}_{\mathsf{p},\tau}$$

$$\widetilde{\mathbf{u}}_{\mathsf{p}} = \mathbf{u}_{\mathsf{p}}^n + \left(\mathbf{g} + \frac{\mathbf{f}_{\mathsf{p},\mathsf{drag}}}{m}\right) \Delta t$$

$$\mathbf{x}_{\mathsf{D}}^{n+1} = \mathbf{x}_{\mathsf{D}}^{n} + \Delta t \mathbf{u}_{\mathsf{D}}^{n+1}$$

MFIX

$$\mathbf{u'}_{p}^{n+1} = \mathbf{u}_{p}^{n} + \left(\mathbf{g} + \frac{\mathbf{f}_{p,drag}}{m}\right) \Delta t$$
$$\mathbf{x'}_{p}^{n+1} = \mathbf{x}_{p}^{n} + \Delta t \mathbf{u'}_{p}^{n+1}$$

$$\left(\mathbf{x'_p^{n+1}}, \mathbf{u'_p^{n+1}}\right) \xrightarrow{\text{Wall B.C.}} \left(\mathbf{x_p^{n+1}}, \mathbf{u^*_p^{n+1}}\right)$$

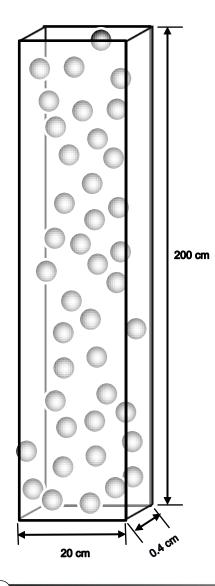
$$\mathbf{u}^{*n+1} \xrightarrow{A_{\mathsf{coll}}} \mathbf{u}_{\mathsf{p}}^{n+1}$$

Wall B.C. on
$$\left(\mathbf{x}_\mathsf{p}^{n+1},\mathbf{u}_\mathsf{p}^{n+1}\right)$$
 ?

Static friction ?

Snider, D. M., An incompressible 3-D MP-PIC model for dense particle flows, JCP (2001)

Sample Problem 1: Sedimentation



Properties

Solids: $D_p = 0.4 \text{ cm}, \rho_p = 2 \text{ g/cm}^3$

Initial solid volume fraction: 0.3 – 0.4

5 parcels per cell (2 particles per parcel)

Gas: Air at standard conditions

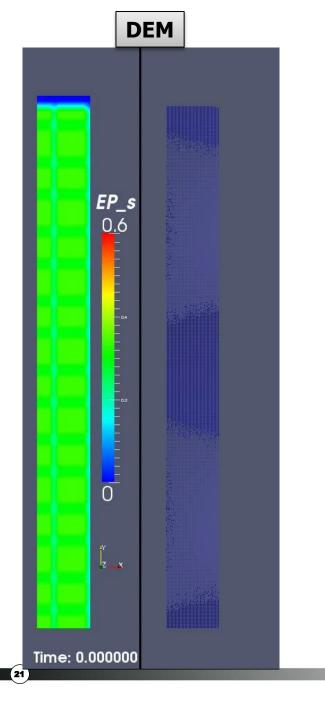
 $e_{n,wall} = 0.8, e_{t,wall} = 1.0$

 $e_n = 0.6$ (frictional A_{coll})

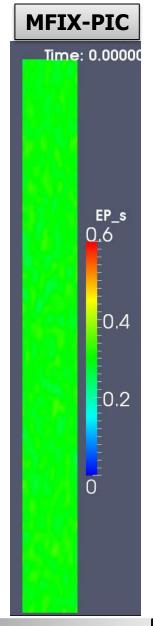
box dimension = $(20x200x0.4) \text{ cm}^3 \equiv (20x100x1) \text{ cells}$

DT = 1.E-02 - 1.E-04 sec

Drag model: Wen & Yu / Ergun

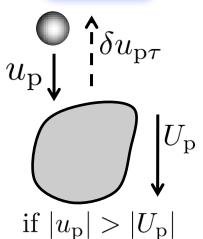


(Dt max=0.001)



Stable simulation with rebound captured at the top

Case 1

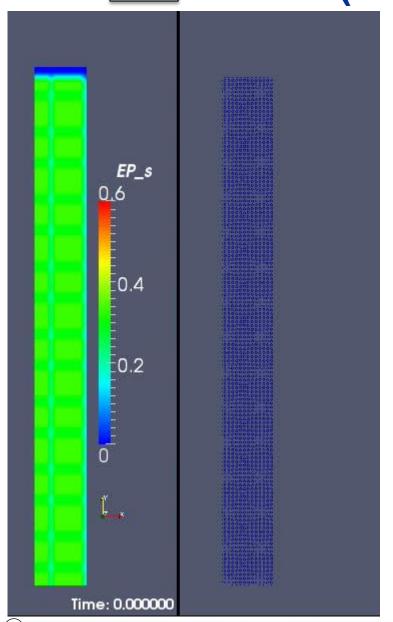


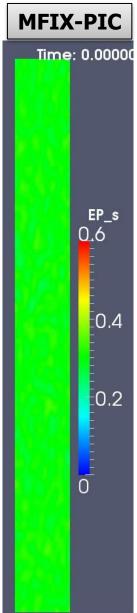
REBOUND

$$u_{\mathbf{p}}^{\overline{n+1}} = -e u_{\mathbf{p}}$$

DEM

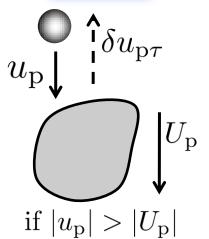
(Dt max=0.001)





Stable simulation with rebound captured at the top

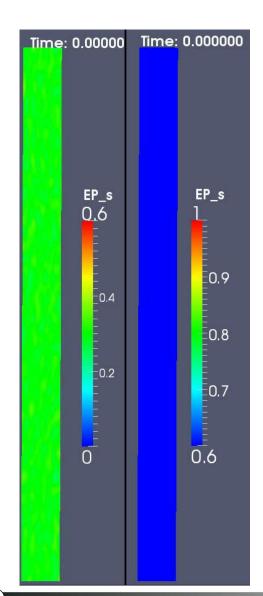
Case 1



REBOUND

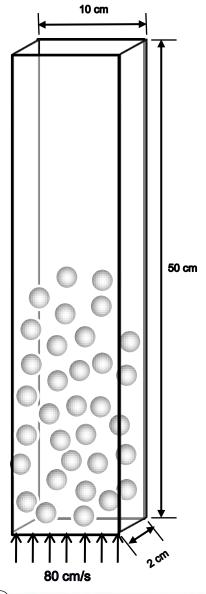
$$u_{\rm p}^{\overline{n+1}} = -e \, u_{\rm p}$$

Effect of DT DT max = 0.01



□Over packing in the wall cells normal to gravity
 ✓ not so much of a problem where there is a counter flow

Sample Problem 2: bubbling bed



Properties

Solids: $D_p = 0.1 \text{ cm}, \rho_p = 2.5 \text{ g/cm}^3$

Initial solid volume fraction: 0.4 up to 20 cm

5 parcels per cell

Gas: Air at standard conditions Fluidization velocity = 80 cm/s

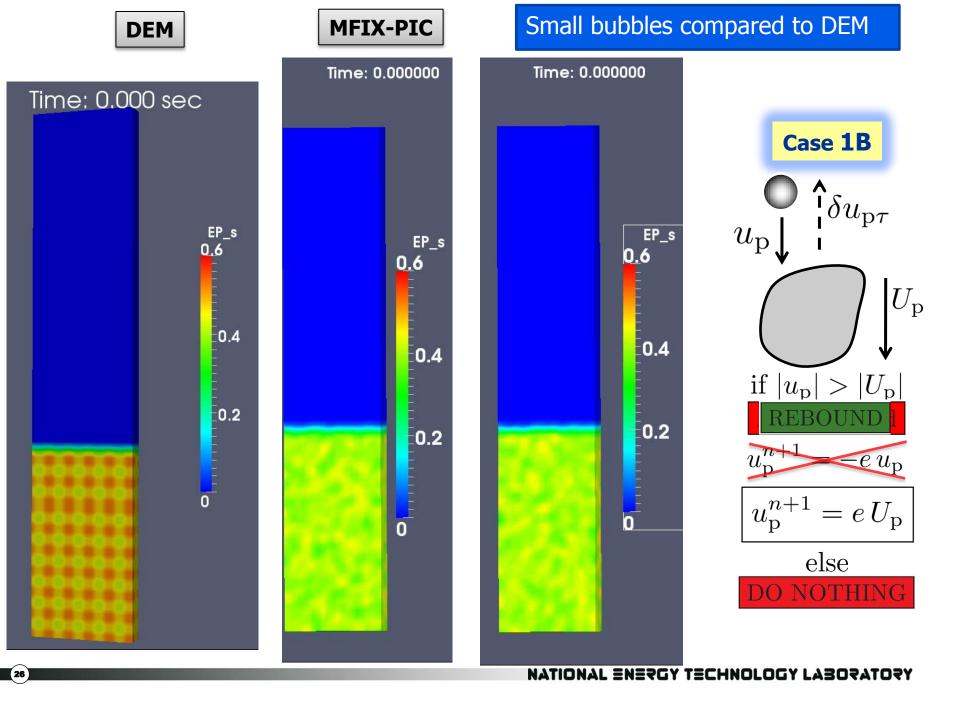
$$e_{n,wall} = 0.8, e_{t,wall} = 1.0$$

$$e_n = 0.8$$

box dimension = (10x50x2) cm³ $\equiv (20x100x4)$ cells

$$DT_{max} = 1.E-03$$

Drag model: Wen &Yu / Ergun

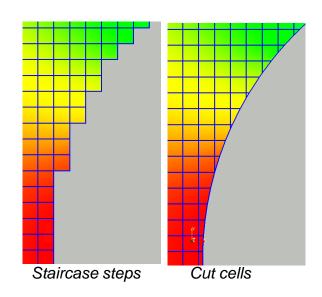


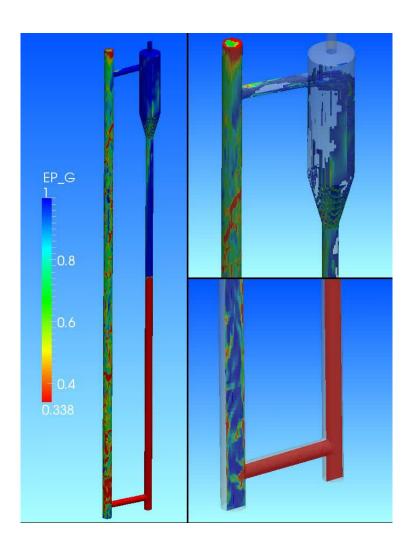
Conclusions/Observations

- MPPIC model implemented in open-source MFIX code
 - A new limiter based on physical arguments formulated for solid-stress model
- ➤ The method is very sensitive to interpolation and/or sequence of particle trajectory equation integration
- ➤ Further work and independent V&V needed to establish *physics-based* rules for a *robust* solid-stress model

Extension to complex geometries

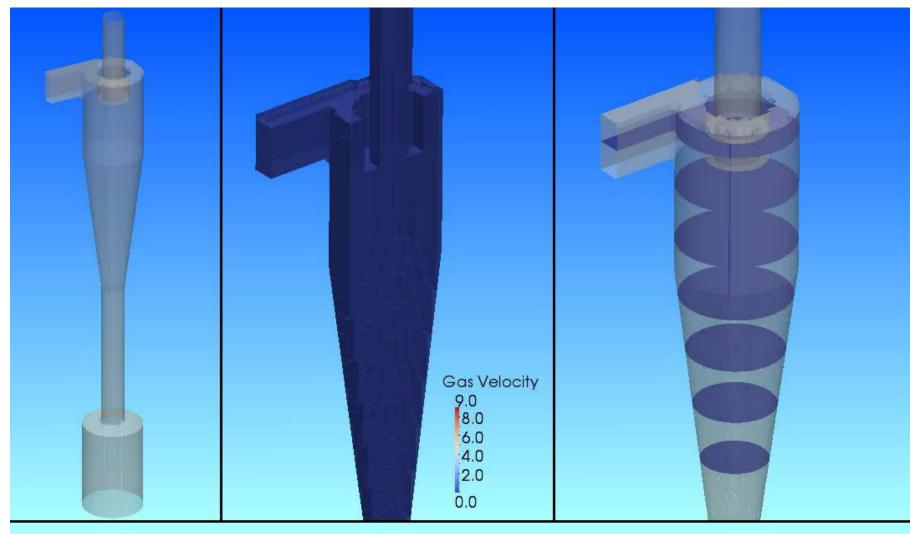
- MFIX is based on structured grid
- Complex geometries are represented in EE solver by cut-cell technique
- MPPIC implementation will use same cut cell technique to avoid staircase steps





EE simulation of NETL CFB (Challenge problem)

Extension to complex geometries



MPPIC - CYCLONE

Time: 0.00 sec

Future work: extension to two-way coupling

Acknowledgments

This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under the RES contract DE-FE0004000.

Thanks